首先要感谢EEPW给这次学习的机会。
本次学习硬件使用Adafruit ESP32-S3 Reverse TFT Feather开发板,通过按键和接近传感器控制播放器,继任务二完成代码编写。
一、硬件
1、播放器硬件

2、接线图

播放器为有源蜂鸣器,PWM或IO控制,播放器即可响起;
接近传感器为磁传感器,磁铁靠近闭合,远离断开。
二、软件代码
1、库文件
播放器控制为PWM控制,最新.uf2自带了库文件,无需添加。
2、基于任务二代码修改
a、蜂鸣器PWM初始化


b、按键控制播放器播放和停止

4、完整代码
import board
import digitalio
import time
import neopixel
import pwmio
import displayio
import terminalio
from adafruit_display_text import label
# 定义按键变量
Button0_Value = 0
Button1_Value = 0
Button2_Value = 0
class TCS3200:
NUM_CYCLES = 44 # 测试多少个周期
def __init__(self, s0_pin, s1_pin, s2_pin, s3_pin, out_pin):
# 初始化控制引脚
self.s0 = digitalio.DigitalInOut(s0_pin)
self.s1 = digitalio.DigitalInOut(s1_pin)
self.s2 = digitalio.DigitalInOut(s2_pin)
self.s3 = digitalio.DigitalInOut(s3_pin)
self.out = digitalio.DigitalInOut(out_pin)
# 配置引脚方向
self.s0.direction = digitalio.Direction.OUTPUT
self.s1.direction = digitalio.Direction.OUTPUT
self.s2.direction = digitalio.Direction.OUTPUT
self.s3.direction = digitalio.Direction.OUTPUT
self.out.direction = digitalio.Direction.INPUT
# 设置频率缩放比为20% (最佳精度)
self.set_frequency_scaling(20)
# 白平衡校准系数 (初始值为1,需要实际校准)
self.r_scal = 1.0
self.g_scal = 1.0
self.b_scal = 1.0
print("TCS3200传感器初始化完成")
def set_frequency_scaling(self, scaling):
"""
设置传感器的频率缩放比例
# s0 s1
# L L 关闭
# L H 2%
# H L 20%
# H H 100%
"""
if scaling == 2: # 2%
self.s0.value = False
self.s1.value = True
# print("TCS3200传感器设置频率缩放比为:%2 -> s0,s1[0,1]")
elif scaling == 20: # 20%
self.s0.value = True
self.s1.value = False
# print("TCS3200传感器设置频率缩放比为:%20 -> s0,s1[1,0]")
elif scaling == 100: # 100%
self.s0.value = True
self.s1.value = True
# print("TCS3200传感器设置频率缩放比为:%100 -> s0,s1[1,1]")
else: # 关闭
self.s0.value = False
self.s1.value = False
# print("TCS3200传感器设置频率缩放比为:%0 -> s0,s1[0,0]")
time.sleep(0.01) # 短暂延时稳定频率缩放比例
def set_color_filter(self, filter_type):
"""
设置传感器的颜色滤波器
# s2 s3
# L L Red
# H H Green
# L H Blue
# H L Clear(no filter)
"""
if filter_type == "Red":
self.s2.value = False
self.s3.value = False
# print("TCS3200传感器设置颜色滤波器为:Red -> s2,s3[0,0]")
elif filter_type == "Green":
self.s2.value = True
self.s3.value = True
# print("TCS3200传感器设置颜色滤波器为:Green -> s2,s3[1,1]")
elif filter_type == "Blue":
self.s2.value = False
self.s3.value = True
# print("TCS3200传感器设置颜色滤波器为:Blue -> s2,s3[0,1]")
else: # "Clear"
self.s2.value = True
self.s3.value = False
# print("TCS3200传感器设置颜色滤波器为:Clear -> s2,s3[1,0]")
time.sleep(0.01) # 短暂延时稳定滤波器
def _bubble_sort(self, arr, n):
# 简单的冒泡排序实现从小到大排列
for i in range(n):
for j in range(0, n - i - 1):
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[j + 1], arr[j]
def measure_frequency(self):
# 测量频率,并转换单位为Hz
timestamps = []
last_state = self.out.value
while len(timestamps) < self.NUM_CYCLES:
current_state = self.out.value
if current_state != last_state: # 发生边缘变化
timestamps.append(time.monotonic_ns())
last_state = current_state
# 计数周期
periods = []
for i in range(2, len(timestamps), 2):
period_ns = timestamps[i] - timestamps[i - 2] # 一个完整周期(两个边缘)
periods.append(period_ns)
# 数据从小到大排列
self._bubble_sort(periods, len(periods))
# print("原始数据系列:", len(periods), periods)
# 修剪数据,计算总和
totals = 0
start_index = 5
end_index = len(periods) - start_index
# print(f"数据取值编号:{start_index:.d}->{end_index-1:.d}")
for i in range(start_index, end_index, 1):
totals += periods[i]
# print(f"修剪数据系列 -> {i:.d}, {periods[i]:.d}")
# avg_period_ns = sum(periods) / len(periods)
avg_period_ns = totals / (end_index - start_index)
# print(f"原始数据总和 -> {totals:.d}, {(end_index - start_index):.d}")
# print(f"原始数据均值 -> {avg_period_ns:.3f}")
frequency = 1_000_000_000 / avg_period_ns # 转换为 Hz
# print(f"原始频率值 -> Frequency:{frequency:.3f}")
return frequency
def read_rgb_freq(self):
# 读取RGB三个通道的频率值
red_freq = 0
green_freq = 0
blue_freq = 0
# 读取红色分量 (S2=0, S3=0)
self.set_color_filter("Red")
red_freq = self.measure_frequency()
# 读取绿色分量 (S2=1, S3=1)
self.set_color_filter("Green")
green_freq = self.measure_frequency()
# 读取蓝色分量 (S2=0, S3=1)
self.set_color_filter("Blue")
blue_freq = self.measure_frequency()
# 清除绿色分量 (S2=1, S3=0)
# self.set_color_filter("Clear")
# print(f"原始频率值 -> R:{red_freq:.3f}, G:{green_freq:.3f}, B:{blue_freq:.3f}")
return red_freq, green_freq, blue_freq
def calibrate_white_balance(self):
# 白平衡校准 - 将传感器对准白色参考物后调用此方法
print("正在进行白平衡校准...")
print("请将传感器对准白色参考物")
# 读取白色参考物的原始频率
red, green, blue = self.read_rgb_freq()
# 换算为RGB值 (18000/255 = 70)
red = red / 70 if red > 0 else 1.0
green = green / 70 if green > 0 else 1.0
blue = blue / 70 if blue > 0 else 1.0
# 计算校准系数 (假设我们希望白色时RGB值接近255)
self.r_scal = 255.0 / red if red > 0 else 1.0
self.g_scal = 255.0 / green if green > 0 else 1.0
self.b_scal = 255.0 / blue if blue > 0 else 1.0
print(f"校准完成 -> R:{self.r_scal:.3f}, G:{self.g_scal:.3f}, B:{self.b_scal:.3f}")
def read_rgb(self):
# 读取RGB三个通道的频率值,应用白平衡,并转换为RGB
r = 0
g = 0
b = 0
# 读取RGB三个通道的频率值
red_freq, green_freq, blue_freq = self.read_rgb_freq()
# 应用白平衡校准 (18000/255 = 70)
r = int(red_freq / 70 * self.r_scal)
g = int(green_freq / 70 * self.g_scal)
b = int(blue_freq / 70 * self.b_scal)
# 限制在0-255范围
r = max(0, min(255, r))
g = max(0, min(255, g))
b = max(0, min(255, b))
return r, g, b
# 初始化板载按键D0/BOOT0,按下接地
button0 = digitalio.DigitalInOut(board.BUTTON)
button0.switch_to_input(pull=digitalio.Pull.UP)
# 初始化板载按键D1,按下接VCC
button1 = digitalio.DigitalInOut(board.D1)
button1.switch_to_input(pull=digitalio.Pull.DOWN)
# 初始化板载按键D2,按下接VCC
button2 = digitalio.DigitalInOut(board.D2)
button2.switch_to_input(pull=digitalio.Pull.DOWN)
# 初始化板载LED(D13)
led0 = digitalio.DigitalInOut(board.LED)
# led0 = digitalio.DigitalInOut(board.D13)
led0.direction = digitalio.Direction.OUTPUT
led0.value = True
# 初始化颜色传感器LED补光灯
led1 = digitalio.DigitalInOut(board.D5)
led1.direction = digitalio.Direction.OUTPUT
led1.value = False
# Neo三色灯初始化
pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)
pixel.brightness = 0.3
# 初始化PWMOut,接蜂鸣器控制脚
# pwm0 = digitalio.DigitalInOut(board.D4)
# pwm0.direction = digitalio.Direction.OUTPUT
# pwm0.value = False
pwm0 = pwmio.PWMOut(board.D4, duty_cycle=0, frequency=1000, variable_frequency=True)
# 8音阶频率(C4, D4, E4, F4, G4, A4, B4, C5)
note_names = ['C4', 'D4', 'E4', 'F4', 'G4', 'A4', 'B4', 'C5']
frequencies = [261, 293, 329, 349, 392, 440, 493, 523]
# 音符播放控制函数
def play_note(note):
if note in range(len(note_names)):
names = note_names[note]
freq = frequencies[note]
print(f"Playing {names} at {freq} Hz")
pwm0.frequency = int(freq)
pwm0.duty_cycle = 2 ** 15
else:
print(f"Note {names} is not valid in the scale")
# 停止播放音符
def stop_playing():
pwm0.duty_cycle = 0
# 当前音符的索引
note_index = 0
# 记录音符播放开始的时间
note_start_time = time.monotonic()
# 初始化显示屏
display = board.DISPLAY
# 创建显示组
splash = displayio.Group()
display.root_group = splash
# 创建DIY活动文本标签
textdo = "Let's do - EEPW DIY"
text_area_do = label.Label(terminalio.FONT, text=textdo, color=0xFFFF00, x=60, y=20)
# 创建文本标签用于显示RGB值
text_area_r = label.Label(terminalio.FONT, text="R: ---", color=0xFF0000, x=10, y=50)
text_area_g = label.Label(terminalio.FONT, text="G: ---", color=0x00FF00, x=10, y=70)
text_area_b = label.Label(terminalio.FONT, text="B: ---", color=0x0000FF, x=10, y=90)
text_area_h = label.Label(terminalio.FONT, text="#------", color=0xFFFFFF, x=10, y=120)
# 显示输出
for text_area in (text_area_do, text_area_r, text_area_g, text_area_b, text_area_h):
splash.append(text_area)
# 创建TCS3200颜色传感器实体
try:
# 创建TCS3200对象
color_sensor = TCS3200(
s0_pin=board.D12,
s1_pin=board.D11,
s2_pin=board.D10,
s3_pin=board.D9,
out_pin=board.D6
)
print("TCS3200实例创建成功")
except Exception as e:
print(f"初始化TCS3200失败: {e}")
# 创建虚拟传感器用于测试
color_sensor = None
# 主循环
while True:
led0.value = True
time.sleep(0.05)
# 读取按键0
if not button0.value:
print("button0按下")
Button0_Value = 1
Button1_Value = 0
Button2_Value = 0
# 读取按键1
if button1.value:
print("button1按下")
Button0_Value = 0
Button1_Value = ~Button1_Value
# 读取按键2
if button2.value:
print("button2按下")
Button2_Value = ~Button2_Value
if Button0_Value:
Button0_Value = 0
# 调用白平衡校准
color_sensor.calibrate_white_balance()
# 更新显示
text_area_r.text = "R: {:.3f}".format(color_sensor.r_scal)
text_area_g.text = "G: {:.3f}".format(color_sensor.g_scal)
text_area_b.text = "B: {:.3f}".format(color_sensor.b_scal)
text_area_h.text = "#------"
if Button1_Value:
# 读取并显示TCS3200颜色传感器的频率值
if color_sensor is not None:
try:
# 调用read_rgb_freq方法读取频率值
R_Val, G_Val, B_Val = color_sensor.read_rgb_freq()
# 更新显示
text_area_r.text = "R: {:.3f}".format(R_Val)
text_area_g.text = "G: {:.3f}".format(G_Val)
text_area_b.text = "B: {:.3f}".format(B_Val)
text_area_h.text = "#: {:.3f},{:.3f},{:.3f}".format(R_Val, G_Val, B_Val)
print("RGB: {:.3f},{:.3f},{:.3f}".format(R_Val, G_Val, B_Val))
except Exception as e:
print(f"读取颜色传感器错误: {e}")
R_Val = 128
G_Val = 128
B_Val = 128
else:
# 更新显示屏
text_area_r.text = "R: {:.3f}".format(R_Val)
text_area_g.text = "G: {:.3f}".format(G_Val)
text_area_b.text = "B: {:.3f}".format(B_Val)
text_area_h.text = "#: {:.3f},{:.3f},{:.3f}".format(R_Val, G_Val, B_Val)
else:
# 读取并显示TCS3200颜色传感器的RGB值
if color_sensor is not None:
try:
# 调用read_rgb方法读取颜色值
R_Val, G_Val, B_Val = color_sensor.read_rgb()
# 更新显示
text_area_r.text = "R: {:3d}".format(R_Val)
text_area_g.text = "G: {:3d}".format(G_Val)
text_area_b.text = "B: {:3d}".format(B_Val)
text_area_h.text = "#: {:02X}{:02X}{:02X}".format(R_Val, G_Val, B_Val)
print("RGB: #{:02X}{:02X}{:02X}".format(R_Val, G_Val, B_Val))
pixel.fill((R_Val, G_Val, B_Val))
except Exception as e:
print(f"读取颜色传感器错误: {e}")
R_Val = 128
G_Val = 128
B_Val = 128
else:
# 更新显示屏
text_area_r.text = "R: {:3d}".format(R_Val)
text_area_g.text = "G: {:3d}".format(G_Val)
text_area_b.text = "B: {:3d}".format(B_Val)
text_area_h.text = "#: {:02X}{:02X}{:02X}".format(R_Val, G_Val, B_Val)
if Button2_Value:
# 停止当前音符(如果正在播放)
stop_playing()
# 播放下一个音符
play_note(note_index)
# 若达到最后一个音符则从头开始,切换到下一个音符
note_index = (note_index + 1) % len(note_names)
# 重置音符开始播放的时间
note_start_time = time.monotonic()
# 防抖处理
time.sleep(0.1)
# 超过最大播放时长后,自动停止播放
if time.monotonic() - note_start_time > 0.5:
stop_playing()
# 记录下一个音符的开始时间
note_start_time = time.monotonic()
else:
# 停止播放
stop_playing()
led0.value = False
time.sleep(0.05)三、整图展示
